28 research outputs found

    Double Dome and Reemergence of Superconductivity in Pristine 6R-TaS2 under Pressure

    Full text link
    Investigating the implications of interlayer coupling on superconductivity is essential for comprehending the intrinsic mechanisms of high temperature superconductors. Van der Waals heterojunctions have attracted extensive research due to their exotic interlayer coupling. Here, we present a natural heterojunction superconductor of 6R-TaS2 that demonstrates a double-dome of superconductivity, in addition to, the reemergence of superconducting under high pressures. Our first principles calculation shows that the first dome of superconductivity in 6R-TaS2 can be attributed to changes in interlayer coupling and charge transfer. The second superconducting dome and the reemergence of superconductivity can be ascribed to changes in the density of states resulting from Fermi surface reconstruction, in which the DOS of T-layer and S p-orbitals play a crucial role. We have reported the first observation in TMDs that non-metallic atoms playing a dominant role in the reemergence of superconducting and the influence of two Lifshitz transitions on superconducting properties

    Factors influencing cognitive function in patients with Huntington's disease from China: A cross-sectional clinical study.

    Get PDF
    BACKGROUND AND AIM Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disorder caused by CAG repeats expansion. Cognitive decline contributes to the loss of daily activity in manifest HD. We aimed to examine the cognition status in a Chinese HD cohort and explore factors influencing the diverse cognitive domains. METHODS A total of 205 participants were recruited in the study with the assessment by neuropsychological batteries, including the mini-mental state examination (MMSE), Stroop test, symbol digit modalities test (SDMT), trail making test (TMT), verbal fluency test (VFT), and Hopkins verbal learning test-revised, as well as motor and psychiatric assessment. Pearson correlation and multiple linear regression models were applied to investigate the correlation. RESULTS Only 41.46% of patients had normal global function first come to our center. There was a significantly difference in MMSE, Stroop test, SDMT, TMT, and VFT across each stage of HD patients (p < .05). Apathy of PBA-s was correlated to MMSE, animal VFT and Stroop-interference tests performance. Severity of motor symptoms, functional capacity, age, and age of motor symptom onset were correlated to all neuropsychological scores, whereas education attainment and diagnostic delay were correlated to most neuropsychological scores except TMT. Severity of motor symptoms, functional capacity, and education attainment showed independent predicting effect (p < .05) in diverse cognitive domains. CONCLUSION Cognitive impairment was very common in Chinese HD patients at the first visit and worse in the patients in advanced phase. The severity of motor symptoms and functional capacity were correlated to the diverse cognitive domains

    Multi-Objective Order Scheduling via Reinforcement Learning

    No full text
    Order scheduling is of a great significance in the internet and communication industries. With the rapid development of the communication industry and the increasing variety of user demands, the number of work orders for communication operators has grown exponentially. Most of the research that tries to solve the order scheduling problem has focused on improving assignment rules based on real-time performance. However, these traditional methods face challenges such as poor real-time performance, high human resource consumption, and low efficiency. Therefore, it is crucial to solve multi-objective problems in order to obtain a robust order scheduling policy to meet the multiple requirements of order scheduling in real problems. The priority dispatching rule (PDR) is a heuristic method that is widely used in real-world scheduling systems In this paper, we propose an approach to automatically optimize the Priority Dispatching Rule (PDR) using a deep multiple-objective reinforcement learning agent and to optimize the weighted vector with a convex hull to obtain the most objective and efficient weights. The convex hull method is employed to calculate the maximal linearly scalarized value, enabling us to determine the optimal weight vector objectively and achieve a balanced optimization of each objective rather than relying on subjective weight settings based on personal experience. Experimental results on multiple datasets demonstrate that our proposed algorithm achieves competitive performance compared to existing state-of-the-art order scheduling algorithms

    Robust Adaptive Transmit Beamforming under the Constraint of Low Peak-to-Average Ratio

    No full text
    In radar detection, in order to make the beam have variable directivity, a Capon beamformer is usually used. Although this traditional beamformer enjoys both high resolution and good interference suppression, it usually leads to high sidelobe and is sensitive to array steering vector (ASV) mismatch. To overcome such problems, this study devises a novel, robust adaptive beamformer that is robust to ASV mismatch under the constraint where the sidelobe is oriented to the ground. Moreover, to make full use of the transmit power, the constraint of a low peak-to-average power ratio (PAPR) is also taken into consideration. Accordingly, this robust adaptive beamformer is developed by optimizing a transmitting beamformer constrained by ASV mismatch and low PAPR. This optimization problem is transformed into a second-order cone programming (SOCP) problem which can be efficiently and exactly solved. The proposed transmit beamformer possesses not only adaptive interference rejection ability and robustness against ASV mismatch, but also direct sidelobe control and a low PAPR. Simulation results are presented to demonstrate the superiority of the proposed approach. The proposed method can make the peak sidelobe level (PSL) level on the ground side below &minus;30 dB

    Transmit Beam Control in Low-Altitude Slow-Moving Small Targets Detection Based on Peak to Average Power Ratio Constraint

    No full text
    When the radar system detects low-altitude, small, slow-moving (LSS) targets, the strong clutter interference from the ground will cause false alarms and affect the detection performance. In this paper, a phased array radar transmit beam steering algorithm is proposed to minimize strong interference from ground radiation. By minimizing the weighted vector norm and choosing variable sidelobe levels, the beam pattern can achieve deep notches in the ground-related area and maintain good main lobe detection performance. Furthermore, the designed beam should be insensitive to array mismatch and be robust. In addition, a peak-to-average power ratio (PAPR) constraint is introduced to fully utilize the transmitted energy. This optimization problem can be transformed into a second-order cone programming (SOCP) problem and solved using an off-the-shelf solver. The simulation results verify that the transmit beam synthesized by this method can meet the requirements of minimizing the main lobe loss and low side lobes on the ground side

    A Multi-Scale U-Shaped Convolution Auto-Encoder Based on Pyramid Pooling Module for Object Recognition in Synthetic Aperture Radar Images

    No full text
    Although unsupervised representation learning (RL) can tackle the performance deterioration caused by limited labeled data in synthetic aperture radar (SAR) object classification, the neglected discriminative detailed information and the ignored distinctive characteristics of SAR images can lead to performance degradation. In this paper, an unsupervised multi-scale convolution auto-encoder (MSCAE) was proposed which can simultaneously obtain the global features and local characteristics of targets with its U-shaped architecture and pyramid pooling modules (PPMs). The compact depth-wise separable convolution and the deconvolution counterpart were devised to decrease the trainable parameters. The PPM and the multi-scale feature learning scheme were designed to learn multi-scale features. Prior knowledge of SAR speckle was also embedded in the model. The reconstruction loss of the MSCAE was measured by the structural similarity index metric (SSIM) of the reconstructed data and the images filtered by the improved Lee sigma filter. A speckle suppression restriction was also added in the objective function to guarantee that the speckle suppression procedure would take place in the feature learning stage. Experimental results with the MSTAR dataset under the standard operating condition and several extended operating conditions demonstrated the effectiveness of the proposed model in SAR object classification tasks

    Edge Structure Learning via Low Rank Residuals for Robust Image Classification

    No full text
    Traditional low-rank methods overlook residuals as corruptions, but we discovered that low-rank residuals actually keep image edges together with corrupt components. Therefore, filtering out such structural information could hamper the discriminative details in images, especially in heavy corruptions. In order to address this limitation, this paper proposes a novel method named ESL-LRR, which preserves image edges by finding image projections from low-rank residuals. Specifically, our approach is built in a manifold learning framework where residuals are regarded as another view of image data. Edge preserved image projections are then pursued using a dynamic affinity graph regularization to capture the more accurate similarity between residuals while suppressing the influence of corrupt ones. With this adaptive approach, the proposed method can also find image intrinsic low-rank representation, and much discriminative edge preserved projections. As a result, a new classification strategy is introduced, aligning both modalities to enhance accuracy. Experiments are conducted on several benchmark image datasets, including MNIST, LFW, and COIL100. The results show that the proposed method has clear advantages over compared state-of-the-art (SOTA) methods, such as Low-Rank Embedding (LRE), Low-Rank Preserving Projection via Graph Regularized Reconstruction (LRPP_GRR), and Feature Selective Projection (FSP) with more than 2% improvement, particularly in corrupted cases
    corecore